Proper Functors and their Rational Fixed Point
نویسنده
چکیده
The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras. In this paper we consider functors on algebraic categories. For them the rational fixed point may no longer be a subcoalgebra of the final coalgebra. Inspired by Ésik and Maletti’s notion of proper semiring, we introduce the notion of a proper functor. We show that for proper functors the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as technical tools for soundness and completeness proofs for coalgebraic regular expression calculi, e.g. for weighted automata. 1998 ACM Subject Classification F.3.2 Semantics of Programming Languages
منابع مشابه
Functoriality of Rieffel’s Generalised Fixed-Point Algebras for Proper Actions
We consider two categories of C-algebras; in the first, the isomorphisms are ordinary isomorphisms, and in the second, the isomorphisms are Morita equivalences. We show how these two categories, and categories of dynamical systems based on them, crop up in a variety of C-algebraic contexts. We show that Rieffel’s construction of a fixed-point algebra for a proper action can be made into functor...
متن کاملSome common fixed point theorems for four $(psi,varphi)$-weakly contractive mappings satisfying rational expressions in ordered partial metric spaces
The aim of this paper is to prove some common fixed point theorems for four mappings satisfying $(psi,varphi)$-weak contractions involving rational expressions in ordered partial metric spaces. Our results extend, generalize and improve some well-known results in the literature. Also, we give two examples to illustrate our results.
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کاملSome common fixed point theorems for four $(psi,varphi)$-weakly contractive mappings satisfying rational expressions in ordered partial metric spaces
The aim of this paper is to prove some common fixed point theorems for four mappings satisfying $(psi,varphi)$-weak contractions involving rational expressions in ordered partial metric spaces. Our results extend, generalize and improve some well-known results in the literature. Also, we give two examples to illustrate our results.
متن کاملRational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces
In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...
متن کامل